Leveraging Machine Learning to Analyze User Conversion in Mobile Pharmacy Apps Using Behavioral and Demographic Data
Isi Artikel Utama
Abstrak
This study explores the use of machine learning techniques to predict user conversion in a mobile pharmacy app based on user behavior and demographic data. The analysis was conducted using two classification models: Logistic Regression and Random Forest. Key features such as time spent on the product page, adding items to the cart, and user demographics (age, gender, device type) were evaluated to determine their impact on conversion rates. Both models demonstrated strong performance, with the Logistic Regression model achieving an Area Under the Curve (AUC) of 0.88 and the Random Forest model achieving an AUC of 0.87. These results indicate that both models effectively distinguish between users who convert and those who do not, with Logistic Regression showing a slightly better overall performance. Feature importance analysis revealed that factors such as adding items to the cart and the time spent on the product page are the most significant predictors of conversion. Furthermore, demographic features like age group and device type also contributed to the model’s predictive power, although they had a smaller impact compared to user engagement features. The findings suggest that machine learning models, particularly Logistic Regression, can be utilized to predict user behavior and optimize user engagement strategies in mobile apps. The study also highlights the importance of user engagement in driving conversions and the potential for targeted marketing based on demographic data. Future work should focus on hyperparameter tuning, exploring additional algorithms, and incorporating real-time data to further enhance model accuracy and adaptability.
Rincian Artikel

Artikel ini berlisensiCreative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with International Journal for Applied Information Management agree to the following terms: Authors retain copyright and grant the International Journal for Applied Information Management right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share (copy and redistribute the material in any medium or format) and adapt (remix, transform, and build upon the material) the work for any purpose, even commercially with an acknowledgement of the work's authorship and initial publication in International Journal for Applied Information Management. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in International Journal for Applied Information Management. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).