Exploring Thematic Travel Preferences of Global Cities through Agglomerative Hierarchical Clustering for Enhanced Travel Recommendations
Main Article Content
Abstract
This study explores the application of Agglomerative Hierarchical Clustering (AHC) to categorize global cities based on thematic travel preferences, aiming to enhance personalized travel recommendations. The dataset used contains travel information for 560 cities worldwide, including thematic ratings across nine categories: culture, adventure, nature, beaches, nightlife, cuisine, wellness, urban, and seclusion, along with climate data and city descriptions. Feature engineering was performed to calculate an overall rating for each city by averaging its thematic scores, and to compute an average annual temperature from monthly climate data. The primary objective of this research was to use AHC to group cities into distinct clusters based on these thematic ratings. The analysis revealed six clusters, each representing different types of travel experiences. Cluster 1 consists of urban cultural hubs with high ratings for culture, cuisine, and urban experiences, while Cluster 2 features cities with a balance of cultural and culinary experiences alongside moderate natural and nightlife attractions. Cluster 3 represents remote, nature-focused cities with high ratings for seclusion and nature. Cluster 4 includes cities renowned for their beaches, nature, and cuisine, while Cluster 5 groups cities that emphasize adventure, nature, and seclusion. Cluster 6 is made up of destinations with a focus on nature, adventure, and seclusion, offering a balance between outdoor activities and tranquility. These findings offer a deeper understanding of the diversity in global city offerings and can significantly improve the effectiveness of travel recommendation systems by aligning cities with users' thematic preferences. By categorizing cities into meaningful clusters, personalized travel suggestions can be made based on users’ specific interests, such as cultural exploration, adventure, or nature. This research lays the groundwork for future studies to incorporate additional data sources and explore alternative clustering techniques for even more refined travel recommendations. The practical applications of this research can enhance real-world travel recommendation platforms, making them more tailored and relevant to individual user preferences
Article Details

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with International Journal for Applied Information Management agree to the following terms: Authors retain copyright and grant the International Journal for Applied Information Management right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share (copy and redistribute the material in any medium or format) and adapt (remix, transform, and build upon the material) the work for any purpose, even commercially with an acknowledgement of the work's authorship and initial publication in International Journal for Applied Information Management. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in International Journal for Applied Information Management. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).