Analysis of Demographic and Consumer Behavior Factors on Satisfaction with AI Technology Usage in Digital Retail Using the Random Forest Algorithm
Main Article Content
Abstract
The rapid integration of artificial intelligence (AI) into digital retail has reshaped consumer interactions, enabling personalized services and operational enhancements. This study investigates the demographic and behavioral factors influencing consumer satisfaction with AI technologies in digital retail, using the Random Forest classification algorithm for predictive modeling. After comprehensive preprocessing and hyperparameter tuning through grid search cross-validation, the Random Forest model achieved an overall accuracy of 83%. While the model showed strong performance for predicting satisfied consumers yielding a precision of 0.84, recall of 0.97, and F1-score of 0.90, it performed poorly in identifying dissatisfied users, with a recall of only 0.27 and F1-score of 0.39, highlighting a class imbalance issue. Feature importance analysis revealed that experiential factors, particularly enhanced AI experience and preference for online services, significantly influenced satisfaction levels, whereas demographic variables such as age and gender had limited predictive value. These findings emphasize the need for digital retailers to focus on user-centric design and service personalization, rather than demographic segmentation alone, to enhance customer satisfaction and loyalty. Furthermore, the study contributes methodologically by demonstrating the effectiveness of Random Forest in handling complex consumer datasets and theoretically by validating TAM and Customer Satisfaction Theory in the context of AI adoption. Despite limitations related to class imbalance and sector-specific data, this research offers actionable insights for retailers, marketers, and system developers aiming to improve AI-driven service quality and consumer engagement. Future studies are encouraged to address these limitations through the inclusion of emotional and contextual variables and by expanding the analysis to other industries for broader applicability.
Article Details

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with International Journal for Applied Information Management agree to the following terms: Authors retain copyright and grant the International Journal for Applied Information Management right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share (copy and redistribute the material in any medium or format) and adapt (remix, transform, and build upon the material) the work for any purpose, even commercially with an acknowledgement of the work's authorship and initial publication in International Journal for Applied Information Management. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in International Journal for Applied Information Management. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).