Applying K-Means Clustering to Group Jobs Based on Location and Experience Level: Analysis of the Job Recommendation
Main Article Content
Abstract
Labor market analysis plays a crucial role in helping job seekers identify employment opportunities that align with their qualifications, location, and experience level. This study uses the K-Means clustering algorithm to group jobs based on these critical factors. By analyzing job market data, the research identifies the most sought-after skills across various industries and highlights the geographic and experience-level disparities in job availability. Key findings include the high demand for foundational skills such as customer service, sales, and production planning, as well as more specialized skills like Medical Research in certain sectors. The study provides actionable insights for job seekers and policymakers, suggesting that targeted skill development and training programs are essential for improving job match quality. However, the study also acknowledges its limitations, such as the lack of consideration for broader economic and social factors that influence labor market trends. Future research is recommended to address these gaps, using more comprehensive datasets and advanced analytical techniques.
Article Details

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with International Journal for Applied Information Management agree to the following terms: Authors retain copyright and grant the International Journal for Applied Information Management right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share (copy and redistribute the material in any medium or format) and adapt (remix, transform, and build upon the material) the work for any purpose, even commercially with an acknowledgement of the work's authorship and initial publication in International Journal for Applied Information Management. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in International Journal for Applied Information Management. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).