Formulation and Implementation of a Bayesian Network-Based Model
Main Article Content
Abstract
At present, Bayesian networks lack consistent algorithms that support structure establishment, parameter learning, and knowledge reasoning, making it impossible to connect knowledge establishment and application processes. In view of this situation, by designing a genetic algorithm coding method suitable for Bayesian network learning, crossover and mutation operators with adjustment strategies, the fitness function for reasoning error feedback can be carried out. Experimental results show that the new algorithm not only simultaneously optimizes the network structure and parameters, but also can adaptively learn and correct inference errors, and has a more satisfactory knowledge inference accuracy rate.
Article Details

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with International Journal for Applied Information Management agree to the following terms: Authors retain copyright and grant the International Journal for Applied Information Management right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share (copy and redistribute the material in any medium or format) and adapt (remix, transform, and build upon the material) the work for any purpose, even commercially with an acknowledgement of the work's authorship and initial publication in International Journal for Applied Information Management. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in International Journal for Applied Information Management. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).