Predicting Pharmaceutical Product Discontinuation Using Decision Tree and Random Forest Algorithms Based on Product Attributes
Main Article Content
Abstract
This study aims to predict the discontinuation of pharmaceutical products using machine learning models, focusing on key product attributes such as manufacturer, composition, price, and packaging. A comprehensive dataset of over 250,000 pharmaceutical products from India was analyzed, with two models—Decision Tree and Random Forest—being employed for prediction. The models were evaluated based on accuracy, precision, recall, and F1-score. The Random Forest model outperformed the Decision Tree with a higher accuracy, but both models struggled with the imbalanced dataset, showing low recall for the minority class (discontinued products). Feature importance analysis identified manufacturer and composition as the most influential factors in predicting product discontinuation. These findings offer valuable insights for pharmaceutical companies in managing product portfolios and optimizing their lifecycle strategies. Despite limitations in data quality and class imbalance, this study provides a foundation for future research, suggesting the integration of additional data sources and the application of deep learning techniques to further enhance prediction accuracy.
Article Details

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with International Journal for Applied Information Management agree to the following terms: Authors retain copyright and grant the International Journal for Applied Information Management right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY-SA 4.0) that allows others to share (copy and redistribute the material in any medium or format) and adapt (remix, transform, and build upon the material) the work for any purpose, even commercially with an acknowledgement of the work's authorship and initial publication in International Journal for Applied Information Management. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in International Journal for Applied Information Management. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).