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Abstract 

This study employs K-Means clustering to analyze survey data from 91 university students, aiming to segment respondents based on their 

information-seeking behaviors (Question 2) and impact perceptions (Question 3) of artificial intelligence (AI). Two distinct clusters emerged: 

Optimistic Problem Solvers, who favor formal channels such as scholarly websites, peer-reviewed papers, and guided discussions, and express 

strong confidence in AI’s problem-solving capabilities with low concern for job displacement or dehumanization; and Critical Watchers, who 

rely more on informal, rapidly updated media (e.g., social platforms, general web searches) and exhibit heightened apprehension regarding AI’s 

socio-economic and ethical risks. Demographically, the former group skews toward sophomores with consistent GPAs and quantitatively oriented 

majors, while the latter displays broader disciplinary representation, balanced gender composition, and greater academic variability. These 

findings validate a dual-dimensional segmentation framework that integrates source behavior with perceptual orientation, highlighting the 

inadequacy of one-size-fits-all AI education. The study recommends differentiated instructional strategies, deep-dive, research-oriented modules 

for problem-solvers and trust-building, narrative-driven outreach for watchers, and outlines future research directions including larger, multi-

institutional samples, longitudinal tracking, and mixed-methods approaches to refine and validate these profiles. 
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1. Introduction 

The rapid proliferation of Artificial Intelligence (AI) technologies has ushered in a transformative era for higher 

education, fundamentally reshaping the ways in which university students engage with learning materials, collaborate 

with peers, and develop the critical skills required for tomorrow’s workforce. As institutions worldwide invest in the 

digital infrastructures necessary to support AI-driven tools ranging from adaptive learning platforms to intelligent 

tutoring systems research by Chen et al. [1] and Chan and Hu [2] demonstrates that campuses with robust technological 

ecosystems report significantly higher levels of student engagement in self‐directed learning activities, underscoring 

the pivotal role that institutional readiness plays in maximizing the pedagogical benefits of AI integration. At the same 

time, studies by Quinde et al. [3] highlight that students’ technological literacy encompassing competencies such as 

data fluency, algorithmic reasoning, and ethical awareness is closely correlated with employability outcomes, as 

employers increasingly prioritize graduates who can critically assess and apply AI capabilities to real‐world problems.  

However, the successful incorporation of AI into curricula depends not only on the physical and digital infrastructure 

but also on the cultivation of a campus culture that values innovation, experimentation, and responsible use of emerging 

technologies, Jo and Bang [4] argue that fostering such a culture requires proactive professional development for 

faculty, interdisciplinary collaboration among academic units, and institutional policies that incentivize the ethical 

deployment of AI in teaching and research. Despite these promising trends, the integration of AI into higher education 

is not without its challenges: ethical considerations such as algorithmic bias, data privacy concerns, and equitable 
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access to AI resources remain front and center in the scholarly discourse. Without rigorous oversight and transparent 

governance frameworks, AI systems risk exacerbating existing educational inequalities, as under‐resourced students 

may lack access to high‐quality internet connectivity, hardware, or training necessary to leverage AI tools effectively.  

Concurrently, evidence from Sarwari and Adnan [5] and Sun and Zhou [6] suggests that AI applications such as large‐

language chatbots (e.g., ChatGPT) can significantly enhance critical thinking, facilitate rapid prototyping of academic 

assignments, and support iterative feedback loops between students and instructors but only when accompanied by 

well‐designed pedagogical scaffolds and clear guidelines addressing responsible usage. Mustopa et al. [7] emphasize 

that, as AI continues to evolve, educational institutions must remain agile in updating curricula, integrating hands‐on 

AI modules, and embedding ethics‐in‐AI conversations throughout academic programs to ensure that students not only 

master technical skills but also develop the judgment and empathy essential for socially responsible innovation. 

Central to these strategic efforts is a deep understanding of student user profiles, that is, nuanced insights into learners’ 

prior knowledge of AI, preferred channels for obtaining information, attitudinal predispositions toward AI benefits and 

risks, and demographic factors that shape technology adoption. Kaur et al. [8] introduce an intelligent profiling system 

that synthesizes personalized data such as academic transcripts, professional experiences, and digital footprints to 

recommend tailored learning pathways, while Kordahi [9] explores digital identity frameworks designed to track user 

interactions with online resources and dynamically adapt content recommendations. Complementing these approaches, 

Blanco et al. [10] demonstrate how applying user‐centered design principles, through the creation of personas and 

scenario‐driven interfaces can optimize navigation experiences and boost engagement with AI tools across diverse 

student segments. Moreover, research by Kraft and Bolves [11] illuminates how socioeconomic background influences 

family and peer support structures in engaging with educational technology, reinforcing the notion that equity‐minded 

profiling is essential for crafting interventions that resonate with learners from varied contexts. 

Yet, despite these advances, there remains a conspicuous gap in the literature concerning the segmentation of AI survey 

respondents by the very dimensions that most directly inform instructional design and policy: namely, the information 

sources students rely upon (e.g., websites, academic papers, social media, peer discussions) and the multifaceted 

perceptions they hold about AI’s impacts (ranging from its problem‐solving potential to concerns about job 

displacement, dehumanization, and societal governance). Qaladi et al. [12] caution that traditional self‐reported surveys 

often fail to capture the longitudinal dynamics of attitude formation, thereby limiting the ability of educators and 

policymakers to design sustained, targeted campaigns. In professional contexts, Valerio [13] alongside Chan and Hu 

[2] illustrate how attitudinal clusters can predict differential adoption behaviors in educational settings. 

To bridge this critical gap, the present study applies K‐Means clustering a widely used unsupervised learning technique 

to segment a cohort of 91 university students who responded to a structured AI survey. By transforming multi‐response 

items (Q2) into binary indicators of information‐source usage and similarly encoding perception items (Q3) into 

discrete attributes, we construct a comprehensive feature matrix that captures both behavioral and attitudinal 

dimensions. The optimal number of clusters is determined through the Elbow Method, examining inertia reductions 

across 𝑘 = 2 to 6 and validated via the Silhouette Score, ensuring that clusters are both compact and well separated. 

Subsequent visualizations employ principal component analysis (PCA) and t‐distributed stochastic neighbor 

embedding (t‐SNE) to project high‐dimensional data into two‐dimensional space, while heatmaps, stacked bar charts, 

and radar (spider) charts enable intuitive interpretation of cluster centroids across Q2 and Q3 variables. We further 

explore how demographic factors gender, year of study, academic major, number of exams passed, and GPA correlate 

with cluster membership, thereby illuminating the intersections between personal background and AI information 

behavior. 

Our analysis reveals two distinct respondent segments: the first, labeled Optimistic Problem Solvers, is characterized 

by a strong proclivity toward leveraging AI for complex problem‐solving tasks and a higher reliance on academic 

sources such as books and peer discussions; the second, termed Critical Watchers, exhibits elevated concerns about 

AI’s potential to displace human labor, erode humanistic values, and exert undue influence over societal norms, often 

complemented by a greater dependence on social media and general‐interest internet sources. These findings not only 

substantiate the theoretical linkages posited by foundational work on technology acceptance and media effects but also 
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furnish practical guidance for higher education stakeholders seeking to tailor AI curricula and outreach initiatives to 

specific learner profiles. 

By delineating the contours of AI information ecosystems and attitudinal landscapes, this study contributes 

methodologically to the field of educational data mining and practically to the design of equitable, effective AI‐

enhanced learning environments. Through targeted profiling and segmentation, universities can craft bespoke training 

modules, ethical guidelines, and communication campaigns that address the distinct needs and concerns of each student 

segment thereby maximizing engagement, fostering technological equity, and ultimately empowering learners to 

navigate the AI‐mediated future with confidence and critical agency. 

2. Literature Review  

2.1 Clustering and Segmentation in Educational and Social Research 

Clustering and segmentation methods have become indispensable tools in both social and educational research for 

decoding complex patterns of behavior and engagement. In the realm of social media analysis, Ma and Zhang [14] 

introduce a network-based segmentation framework that categorizes publics according to their interaction patterns and 

communication flows, demonstrating how insights into connectedness can reveal distinct community dynamics. This 

network paradigm carries over to educational contexts, Zhou [15] illustrates that clustering students by their online 

learning behaviors uncovers unique learner profiles, enabling instructors to tailor pedagogical strategies and 

personalize learning experiences through data-driven segmentation. 

Beyond purely digital interactions, segmentation also informs targeted interventions across diverse domains. Kinnunen 

et al. [16] show how shared music experiences among Generation Z foster broader social identities and community 

cohesion an insight that parallels the benefits of collaborative learning environments, where peer networks significantly 

influence educational outcomes. Similarly, Mukoka et al. [17] demonstrate that interventions directed at specific 

community groups identified through social network characteristics maximize engagement and effectiveness in public 

health campaigns. Translating these approaches to academia, educators can leverage network-informed segmentation 

to identify and support at-risk or low-performing student cohorts, thereby enhancing overall learning outcomes. 

While interdisciplinary connections to marketing and consumer behavior offer valuable methodological insights, some 

contexts such as Safeer’s [18] study on online impulse buying in fashion retail do not directly inform clustering 

applications in education and were therefore omitted from this review. Collectively, the highlighted studies underscore 

the power of a networked approach to segmentation: by integrating social media analytics with education data mining, 

researchers and practitioners can develop comprehensive strategies that address the unique characteristics of distinct 

user groups and foster improved outcomes across both social and educational settings. 

2.2 Applications of K-Means Clustering in Technology Adoption Studies 

K-Means clustering has proven invaluable for segmenting users based on their interactions with new technologies 

across various domains. In the hospitality sector, Demirçiftçi et al. [19] applied K-Means to classify hotel guests into 

technology compassionates and casual users, demonstrating that differences in personality traits can significantly 

influence in-room technology adoption and usage patterns. Similarly, Sakalessy and Purnomo [20] used K-Means to 

evaluate IT department employees’ performance, showing how clustering by technology utilization metrics can guide 

strategic workforce development and targeted training interventions. 

In educational settings, K-Means has been leveraged to tailor instruction by grouping learners according to their digital 

competencies and engagement. Faisal et al. [21] segmented vocational high school students based on ICT skill levels, 

enabling educators to design differentiated learning pathways that address each group’s specific needs. Qiao [22] 

extended this approach to civic education, mining big data from college curricula to identify patterns of student 

engagement with digital civic practices, thereby informing curriculum adjustments that enhance technology acceptance 

and participation. 

Beyond sector-specific applications, K-Means also aids in understanding broader technology acceptance dynamics. 

Ibrahim et al. [23] incorporated the technology acceptance model into their clustering of AI adopters, revealing distinct 



International Journal for Applied Information Management 

Vol. 5, No. 1, April 2025, pp. 58-72  

ISSN 2776-8007 

61 

 

 

 

adopter types whose characteristics can inform customized marketing and training strategies. Collectively, these studies 

underscore the versatility of K-Means clustering as a tool for uncovering actionable insights whether to optimize guest 

experiences, improve learning outcomes, refine organizational performance, or foster greater acceptance of emerging 

technologies. 

2.3 Role of Information Sources and Impact Perceptions in AI Acceptance 

The role of information sources in shaping user attitudes toward AI technologies is particularly pronounced across 

domains such as healthcare, education, and business. Li et al. [24] report that oncologists with stronger educational 

backgrounds place greater trust in AI tools. These findings underscore how well-informed users who perceive their 

information channels as trustworthy tend to view AI’s benefits more favorably, thereby increasing their intention to 

adopt such technologies. 

Perceived utility and ease of use, as outlined in the Technology Acceptance Model (TAM), further mediate AI 

acceptance. Edgington and Kasztelnik [25] demonstrate that systems judged to be both useful and user-friendly foster 

higher adoption rates, and Schepart et al. [26] emphasize that transparency and explainability in AI decision-making 

strengthen user trust, positive perceptions of AI can offset concerns about associated risks. In educational 

environments, Valerio [13] highlights that students’ awareness of ethical considerations is crucial; addressing such 

concerns alongside technical capabilities is essential to promote widespread acceptance among both educators and 

learners. 

Demographic and socio-professional factors also play a significant role in AI adoption. Jiang et al. [27] show that 

personal experience, professional background, and education level influence user receptivity, with individuals in tech-

centric fields generally more open to AI tools than those in less digitalized sectors. In healthcare, Shinners et al. [28] 

find that practitioners in rural settings often with limited exposure to AI exhibit greater resistance compared to 

metropolitan counterparts. These insights point to the need for tailored information dissemination strategies that address 

varying levels of familiarity, professional contexts, and ethical concerns, thereby ensuring that AI adoption efforts 

resonate with the specific needs of diverse user groups. 

2.4 Previous Studies on AI User Profiling in Academic Contexts 

The exploration of user profiling in academic contexts, particularly regarding artificial intelligence (AI), provides 

essential insights into how students, educators, and administrators adapt to these technologies. Several studies have 

demonstrated that user profiling can enhance the effectiveness of AI applications in educational settings, ensuring that 

tools are customized to meet the specific needs and preferences of different users. 

For instance, the work by Jiang et al. emphasizes that understanding the different acceptance attitudes and decision-

making mechanisms of users interacting with AI is crucial. They categorize AI users into service providers and task 

substitutes, revealing how individual differences influence users' interactions with AI applications Jiang et al. [27]. 

This nuanced understanding of user profiling allows for the creation of AI tools that resonate more effectively with 

diverse user categories, thus promoting higher acceptance rates. 

Moreover, Liu and Shi [29] discuss how user characteristics and AI attributes influence the intention to use AI systems. 

Their findings highlight the importance of understanding users' emotional and cognitive profiles, which can aid 

developers in designing AI technologies that align better with user expectations and enhance adoption [29]. Such 

considerations are particularly relevant in educational contexts, where AI tools are integrated into curricula and learning 

management systems. 

In the domain of AI chatbots in academic libraries, understanding user interactions can optimize these tools for 

educational purposes [30]. The profiling of users based on their needs assists in identifying how AI can enhance 

academic research and resource navigation [30]. The study highlights concerns associated with the technology while 

proposing that tailored interactions can foster positive user experiences. 

Furthermore, the study by Yu et al. [31] suggests that profiling can significantly improve AI outcomes in specialized 

settings, such as remote assistance frameworks. Personalized AI, which considers profiling elements like users' 
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previous experiences and preferences, can enhance the training of AI models, ultimately leading to better service 

provision in educational environments. 

Collectively, these studies underscore that user profiling is essential in understanding and enhancing the integration of 

AI technologies in educational contexts. Tailoring AI applications to meet the specific needs and preferences of users 

not only improves technology acceptance but also creates a more responsive and effective educational experience. 

3. Methodology 

The following diagram illustrates the steps involved in the data analysis process using the K-Means algorithm, as 

shown in figure 1. 

 
Figure 1. Research Methodology 

3.1. Data Collection 

This study employs a cross-sectional survey design to explore patterns in how university students access AI information 

and perceive its impacts. The dataset comprises 91 respondents who completed an online questionnaire distributed 

across multiple academic programs. Key survey items are summarized in table 1, and demographic variables are 

detailed in table 2. 

Table 1. Overview of Key Survey Variables (Q2 & Q3 Items) 

Variable Code Description Type 

Q2#1.Internet Accessed AI information via Internet (websites, blogs, search) Binary 

Q2#2.Books/Papers Accessed AI information via books or scientific publications Binary 

Q2#3.Social_media Accessed AI information via social media Binary 

Q2#4.Discussions Obtained AI information through discussions (forums, peers, etc.) Binary 

Q2#5.NotInformed Has not obtained any information about AI Binary 

Q3#1.AI_dehumanization Perceives AI as potentially reducing human aspects Binary 

Q3#2.Job_replacement Perceives AI as potentially replacing human jobs Binary 

Q3#3.Problem_solving Perceives AI as potentially aiding problem solving Binary 

Q3#4.AI_ruling_society Perceives AI as potentially governing societal order Binary 

Table 2. Overview of Demographic Variables 

Variable Code Description Type 

Q12.Gender Respondent’s gender (Male / Female) Categorical 

Q13.Year_of_study Year of study (1 = Freshman, 2 = Sophomore) Ordinal 

Q14.Major Academic major/discipline (e.g., Computer Science) Categorical 

Q15.Passed_exams Number of exams completed by the respondent Numeric (count) 

Q16.GPA Cumulative Grade Point Average (0–10 scale) Numeric (ratio) 
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Respondents were recruited via university mailing lists and social media groups over a two-week period. Participation 

was voluntary and anonymous, with informed consent obtained before survey submission. Data completeness checks 

ensured that only fully completed Q2 and Q3 responses were included in the final analysis. 

3.2. Data Preprocessing 

Before applying K-Means clustering, all survey responses were transformed into a suitable feature matrix. First, multi‐

response items in Q2 (information sources) and Q3 (impact perceptions) were converted into binary indicator variables 

via one-hot encoding, with each possible option represented by its own column indicating selection (1) or non-selection 

(0). Any respondents with incomplete answers for Q2 or Q3 were removed to maintain consistency in the clustering 

inputs, while sporadic missing values in demographic fields (such as GPA) were imputed, numeric gaps with the 

median and categorical gaps with the mode. Since the one-hot-encoded Q2 and Q3 features are already on a common 

binary scale, no further scaling was necessary for clustering; however, when demographic variables like GPA were 

later incorporated into supplementary analyses, they were standardized using z-score normalization to ensure 

comparability across different measurement scales. 

3.3. Clustering Algorithm 

K-means clustering works by minimizing the variance within clusters, ensuring that the items within a cluster are as 

similar as possible while being different from those in other clusters. The algorithm works iteratively by assigning data 

points to the nearest cluster centroid and recalculating the centroids until convergence. The formula used to calculate 

the distance between 𝑎 data point 𝑥𝑖 and 𝑎 cluster centroid 𝐶𝑘 is typically the Euclidean distance, given by:  

𝑑(𝑥𝑖, 𝐶𝑘) = √∑ (𝑛
𝑗=1 𝑥𝑖𝑗 − 𝑐𝑘𝑗)2  

The K-Means algorithm seeks to partition a set of 𝑛 observations {𝑥1, 𝑥2, . . . , 𝑥𝑛) into 𝑘 clusters 𝐶1, 𝐶2, . . . , 𝐶𝑘 by 

minimizing the total within-cluster sum of squared distances (inertia), given by 

𝐽 = ∑ ∑ ||𝑥𝑖 − 𝜇𝑗||2
𝑥𝑖∊𝐶𝑗

𝐾
𝑗=1   

Each cluster centroid 𝜇𝑗 is defined as the mean of its members, 𝜇𝑗 =  
1

|𝐶𝑗|
 ∑ 𝑥𝑖 .𝑥𝑖∊𝐶𝑗

 After initializing centroids (here 

via k-means++ to improve convergence stability), the algorithm alternates between assigning each point to the nearest 

centroid (by Euclidean distance) and recomputing centroids until assignments no longer change. To determine the 

optimal 𝑘, the Elbow Method plots 𝐽(𝑘) for a range of 𝑘 values and identifies the point of diminishing returns, while 

the Silhouette Score evaluates cohesion and separation by computing, for each observation 𝑥𝑖 the average intra-cluster 

distance. 

𝑎(𝑖) =  
1

|𝐶𝑐(𝑖)|−1
∑ ||𝑥𝑖 − 𝑥𝑗||𝑥𝑗∊𝐶𝑐(𝑖),𝑗≠𝑖   

and the lowest average inter-cluster distance 

𝑏(𝑖) = min
𝑚≠𝑐(𝑖)

1

|𝐶𝑚|
∑ ||𝑥𝑖𝑥𝑗∊𝐶𝑚

− 𝑥𝑗||  

then forming the silhouette coefficient 

𝑠(𝑥𝑖) =
𝑏(𝑖)−𝑎(𝑖)

max {𝑎(𝑖),𝑏(𝑖)}
  

with the overall score �̅� =
1

𝑛
∑ 𝑠(𝑖).𝑛

𝑖=1  By comparing the inertia curve and mean silhouette scores for 𝑘 from 2 to 6, we 

identified 𝑘 = 2 as providing the best trade-off between compact, well-separated clusters. 

3.4. Validation and Visualization 

In order to validate the coherence and separation of the two clusters, we employed both quantitative and visual 

techniques. A silhouette plot was generated by computing the silhouette coefficient 𝑠(𝑥𝑖) for each observation, defined 

as the ratio of its distance to the nearest non‐own cluster over its distance to its own cluster, and then plotting these 

(1) 

(4) 

(2) 

(3) 

(5) 
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values in ascending order within each cluster. High average silhouette values indicate that members are appropriately 

grouped together, while low or negative values reveal ambiguous assignments. Complementing this, we performed 

dimensionality reduction via Principal Component Analysis (PCA) and t-distributed Stochastic Neighbor Embedding 

(t-SNE) to project the high-dimensional Q2 and Q3 feature space into two dimensions. By plotting each respondent in 

PCA and t-SNE space and coloring points by cluster label, we visually confirmed that the two clusters form distinct, 

well-separated regions. 

For centroid interpretation, we translated the cluster centers back into the original Q2 and Q3 variables and rendered 

these summaries in several chart formats. A heatmap of centroid values highlights, via color intensity, the average 

binary selection rate for each information source and perception item across clusters. Stacked bar charts then illustrate 

the proportional composition of sources (Q2) or perceptions (Q3) for each cluster, making it easy to compare relative 

emphasis on, for example, Internet versus Books/Papers or Problem-Solving versus Job-Replacement concerns. 

Finally, a radar (spider) chart of the Q3 centroids provides an intuitive profile of each cluster’s impact perceptions by 

plotting the four perception dimensions radially; this format draws immediate attention to which perceptions dominate 

in each group, such as a strong Problem-Solving orientation versus heightened Dehumanization worries. Together, 

these validation and visualization steps give both statistical assurance and intuitive insight into the nature of the two 

respondent segments. 

4. Results and Discussion 

4.1. Result 

Figure 2 plots total within‐cluster inertia against the number of clusters 𝑘. We observe a sharp decline in inertia from 

𝑘 = 1 to 𝑘 = 2, after which the rate of decrease diminishes considerably. This identifiable elbow at 𝑘 = 2 indicates 

that splitting into two clusters captures the major structure in the data without overfitting; additional clusters yield only 

marginal gains in compactness, validating our selection of 𝑘 = 2. 

 

Figure 2. Elbow Method for Optimal k 

Figure 3 presents each observation’s silhouette coefficient 𝑠(𝑖), which measures how well it fits within its assigned 

cluster versus the nearest alternative. In both Cluster 0 and Cluster 1, most 𝑠(𝑖) values are positive, many exceeding 

0.2 and reaching up to around 0.5 for Cluster 0 indicating strong cohesion (high intra‐cluster similarity) and good 

separation (low inter‐cluster similarity). The absence of substantial negative values confirms few misassignments, 

further supporting that 𝑘 = 2 produces well‐defined clusters. 
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Figure 3. Silhouette Plot for 2 Clusters 

Figure 4 visualizes the results of PCA on the Q2 and Q3 feature set, projecting respondents onto the first two principal 

components. Points colored by cluster label (purple = Cluster 0, yellow = Cluster 1) form two distinct clouds, 

underscoring the separation achieved by K-Means. Overlaid loading vectors for each original variable reveal the drivers 

of this separation: the Problem_solving arrow points toward Cluster 0’s region, while Job_replacement and 

AI_rulling_society arrows align with Cluster 1’s domain. This confirms that these perceptions and source variables are 

the primary dimensions distinguishing the two respondent segments. 

 

Figure 4. PCA Biplot of Q2 & Q3 

Figure 5 displays the average selection rates for each Q2 (information source) and Q3 (impact perception) variable 

across the two clusters. Cluster 0 shows a particularly high mean on Q3#3.Problem_solving (4.6) with comparatively 

lower averages on Q3#2.Job_replacement (2.3) and Q3#1.AI_dehumanization (1.9). In contrast, Cluster 1 averages 

much higher on the risk‐oriented perceptions, Job_replacement (4.1) and AI_dehumanization (3.2) and slightly lower 

on Problem_solving (3.8). The source variables (Q2) also differ: Cluster 0’s centroid has higher values for 

Books/Papers (0.45) and Discussions (0.27), whereas Cluster 1 relies more on Social_media (0.46). 
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Figure 5. Heatmap of Centroid Features (Q2 & Q3) 

Figure 6 presents these Q2 centroids in a bar chart. Both clusters heavily favor the Internet (Cluster 0: 0.80, Cluster 1: 

0.83), but Cluster 0 supplements its information with printed or formal channels Books/Papers (0.45) and Discussions 

(0.27), more than Cluster 1 (Books/Papers 0.26, Discussions: 0.13). Conversely, Cluster 1 shows a noticeably higher 

reliance on Social_media (0.46 vs. 0.42). This divergence suggests that Optimistic Problem Solvers seek more formal, 

structured knowledge, while Critical Watchers lean on rapid, user‐generated content. 

 

Figure 6. Centroid Patterns for Q2 (Sources of Information) 

In Figure 7, the radar (spider) plot maps Q3 centroids on a four-axis chart. Cluster 0’s polygon peaks strongly on 

Problem_solving, creating a pronounced spike, while its values on the risk dimensions remain moderate. Cluster 1 

forms a more rounded shape with elevated scores on Job_replacement, AI_dehumanization, and AI_rulling_society, 

indicating a consistently cautious mindset across multiple concern areas. The contrast in shapes visually encapsulates 

each cluster’s defining perceptual profile. 

 

Figure 7. Radar Chart of AI Perceptions (Q3) by Cluster 
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Figure 8 overlays the Q2 centroids in stacked bars, making it easy to compare the relative composition within each 

cluster. The height of the Internet segment dominates both bars, but the secondary segments differ: Cluster 0’s stack 

includes larger blocks for Books/Papers and Discussions, whereas Cluster 1’s stack enlarges the Social_media block. 

This format underscores how the clusters share common primary channels yet diverge in their secondary information 

preferences. 

 

Figure 8. Stacked Bar Chart of Information Sources (Q2) by Cluster 

Figure 9 shows boxplots of cumulative GPA for each cluster. Both Cluster 0 and Cluster 1 share a similar median GPA 

(around 7.7–7.8), indicating comparable central academic performance. However, Cluster 1 exhibits a wider 

interquartile range and longer whiskers, reflecting greater variability: some Cluster 1 members achieve GPAs above 

9.0, while others fall closer to 5.0. In contrast, Cluster 0’s GPA scores are more tightly packed between approximately 

7.2 and 8.7, suggesting a more academically homogeneous group. 

 

Figure 9. GPA Distribution by Cluster 

In figure 10, we present the proportion of male and female respondents within each cluster. Cluster 0 is comprised of 

roughly 71% male and 29% female students, indicating a strong male predominance. Cluster 1, by comparison, is more 

gender‐balanced with about 59% male and 41% female. This shift suggests that female respondents are relatively more 

represented among the Critical Watchers segment. 
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Figure 10. Gender Distribution by Cluster 

Figure 11 compares Freshman (Year 1) versus Sophomore (Year 2) proportions across clusters. Cluster 0 has a higher 

concentration of Sophomores (69%) compared to Freshmen (31%), implying that more advanced students tend to fall 

into the Optimistic Problem Solvers segment. Cluster 1 is more evenly split 56% Sophomore and 44% Freshman—

indicating that both early and later‐stage undergraduates share the cautious Critical Watchers profile. 

 

Figure 11. Year of Study Distribution by Cluster 

Finally, figure 12 displays the distribution of academic majors in each cluster. Cluster 0 is dominated by students from 

Major 2 (47%), with fewer from Majors 1 (26%) and 3 (27%). In contrast, Cluster 1 shows a more evenly distributed 

composition: Major 1 (39%), Major 2 (37%), and Major 3 (24%). This suggests that the Optimistic Problem Solvers 

segment is more concentrated within a specific discipline (Major 2), whereas the Critical Watchers group spans a 

broader array of fields. 

 

Figure 12. Major Distribution by Cluster. 

4.2. Discussion 

The Optimistic Problem Solvers cluster, comprising approximately half of the respondents, consistently relies on 

formal, structured information channels: about 80% consult academic Internet sources, nearly 45% reference books or 
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peer-reviewed papers, and roughly 27% participate in guided discussions. Their impact perception profile peaks 

strongly on AI’s problem-solving potential (average 4.6), while concerns about job replacement (2.3) and 

dehumanization (1.9) remain modest. Demographically, this cluster skews toward sophomores (69% vs. 31% 

freshmen), exhibits a tight GPA distribution centered around 7.7–8.0, and is predominantly male (71%) and 

concentrated in Major 2 (47%). These patterns suggest that more experienced, consistently performing students 

particularly in quantitatively rigorous discipline’s view AI primarily as a tool for enhancing analytical reasoning and 

complex problem-solving, reflecting findings that high competency learners benefit from data-driven pedagogies [15]. 

In contrast, the Critical Watchers cluster depends more on informal, rapidly updated sources: 46% use social media 

compared to 42% in the other cluster, while engagement with books/papers (26%) and discussions (13%) is lower. 

Their perceptual profile is risk-oriented, with high averages for job displacement (4.1) and dehumanization (3.2), and 

a moderate score for problem-solving (3.8). This cluster is more gender-balanced (59% male, 41% female), includes a 

higher proportion of freshmen (44% vs. 56% sophomores), and shows greater GPA variability (5.2–9.0). Their evenly 

distributed majors indicate that students from less computational fields harbor greater skepticism toward AI, perhaps 

due to limited curricular emphasis on algorithmic literacy. This aligns with network-based segmentation research 

showing that groups defined by informal, peer-driven interactions exhibit greater skepticism toward authoritative 

narratives [14]. 

The stark divergence between clusters underscores the inadequacy of a one size fits all approach to AI education. For 

Optimistic Problem Solvers, advanced, research-oriented modules can deepen engagement: hands-on workshops in 

machine-learning model development, data visualization, and algorithmic bias mitigation align with their problem-

solving orientation. These students mirror the technology compassionates identified in hospitality studies, who engage 

deeply when content resonates with their analytical predilections [19]. 

Conversely, Critical Watchers require trust-building outreach delivered through the channels they frequent social 

media, AI chatbots, and peer forums. Bite-sized, narrative-driven content explaining how AI models arrive at decisions 

can directly address their opacity concerns. Interactive Q&A sessions with AI developers and ethics-in-AI seminars 

can humanize technology, counteract misinformation, and provide safe spaces for voicing concerns, gradually shifting 

perceptions toward informed acceptance. 

Moreover, proactively integrating ethical discussions on topics like job displacement and dehumanization into 

introductory AI literacy courses can legitimize Critical Watchers reservations and model responsible AI use. 

Embedding reflective assignments that ask students to analyze real-world AI failures may further engage risk-oriented 

learners by validating their concerns and demonstrating mitigations. 

Our segmentation both converges with and extends existing literature. In vocational education, Faisal et al. [21] applied 

K-Means to group students by ICT competency, enabling targeted instruction that improved engagement paralleling 

our Optimistic Problem Solvers. Qiao [22] showed that cluster-informed civic education interventions increase student 

participation, supporting our recommendation for tailored outreach to Critical Watchers. Li et al. [24] reported that 

clinicians with advanced training trust AI more, further reinforcing the link between formal knowledge acquisition and 

acceptance. By integrating both information-source behaviors and perception dimensions, our study provides a unified 

segmentation framework that bridges these domain-specific insights and applies them to a higher-education setting. 

Several limitations temper our conclusions. The modest sample size (n = 91) from a single institution constrains 

external validity; replication with larger, multi-institutional cohorts is needed to test the stability of these clusters across 

diverse academic environments. Our binary encoding of multi-response items simplifies nuanced behaviors future 

research should explore ordinal or weighted encoding to capture intensity of preferences. The cross-sectional design 

precludes analysis of how cluster memberships evolve over time, Qaladi et al. [12] emphasize the importance of 

longitudinal tracking to understand attitude trajectories. Incorporating mixed methods such as in-depth interviews could 

enrich quantitative clusters with deeper insights into students’ motivations, emotional drivers, and contextual factors. 

Future work should implement longitudinal surveys to monitor movement between Optimistic and Critical segments 

following specific interventions, thereby empirically testing the efficacy of tailored curricula. Integrating learning 

analytics clickstream data from AI enhanced platforms could refine cluster definitions and enable real-time 
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personalization. Additionally, comparative studies across cultural contexts would illuminate how socio-cultural factors 

influence information behaviors and AI perceptions. 

This research advances educational data mining by demonstrating that dual-dimensional segmentation combining 

source behaviors and impact perceptions yields actionable profiles for designing differentiated AI curricula, 

communication campaigns, and governance protocols. Practically, institutions can deploy modular AI literacy 

programs, a deep-dive track for Optimistic Problem Solvers and a trust-building track for Critical Watchers, delivered 

via appropriate channels. Ongoing cluster monitoring can guide iterative content refinement, ensuring responsiveness 

to evolving student needs. 

In sum, segmenting AI survey respondents into two distinct clusters provides a robust, data-driven foundation for 

personalized AI education strategies, highlighting the imperative of aligning pedagogical design with students’ 

information habits, perceptual orientations, and demographic contexts to foster equitable and effective AI adoption in 

higher education. 

5. Conclusion 

This study applied K-Means clustering to segment 91 university students based on their information-seeking behaviors 

(Q2) and impact perceptions (Q3) of artificial intelligence (AI). Two distinct clusters Optimistic Problem Solvers and 

Critical Watchers emerged, each characterized by unique combinations of preferred information sources, perceptual 

emphases, and demographic profiles. The Optimistic Problem Solvers heavily rely on formal, structured channels (e.g., 

scholarly Internet resources, peer-reviewed papers, guided discussions) and express strong confidence in AI’s problem-

solving capabilities while harboring relatively low concerns about job displacement or dehumanization. In contrast, the 

Critical Watchers depend more on informal, rapidly updated media (e.g., social media, general web searches) and 

display heightened apprehension regarding AI’s socio-economic and ethical risks, alongside more varied academic 

standings and broader disciplinary representation. These findings validate the dual-dimensional segmentation 

framework combining source behavior with perceptual orientation as an effective approach for uncovering meaningful 

user profiles that extend beyond traditional demographic or competency-based groupings. The clear divergence 

between clusters underscores the limitations of one-size-fits-all AI education and highlights the need for differentiated 

instructional strategies: deep-dive, research-oriented modules for the Optimistic Problem Solvers and trust-building, 

narrative-driven outreach via familiar channels for the “Critical Watchers.” Such tailored interventions promise to 

enhance engagement, build confidence, and address ethical concerns in a manner aligned with each group’s 

preferences. 

Despite its contributions, this research is limited by its single-institution sample, binary encoding of multi-response 

items, and cross-sectional design. Future studies should employ larger, more diverse cohorts, incorporate graded 

preference measures, and adopt longitudinal and mixed-methods approaches to track profile evolution and assess 

intervention efficacy. Integrating real-time learning analytics may further refine segmentation and enable dynamic 

personalization of AI literacy programs. By delineating the contours of AI information ecosystems and perceptual 

landscapes, this study offers both methodological advances in educational data mining and practical guidance for higher 

education stakeholders. Implementing modular AI literacy tracks one emphasizing technical depth and another 

fostering transparent, ethics-oriented engagement can ensure that AI education is equitable, effective, and responsive 

to the diverse needs of today’s learners. 
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