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Abstract 

This study investigates the application of machine learning for classifying vehicles based on their technical specifications using the Random 

Forest algorithm. The objective was to create a robust classification model capable of categorizing vehicles into six distinct classes: Hybrid, SUV, 

Sedan, Sports, Truck, and Wagon. The analysis was conducted using a comprehensive dataset that included features such as engine size, 

horsepower, weight, and fuel efficiency, along with the target variable, vehicle class. To address the issue of class imbalance, the Synthetic 

Minority Over-sampling Technique (SMOTE) was applied to balance the training data. The results showed that the model performed particularly 

well in classifying Sedans, achieving a perfect recall and high F1-score, while struggling with underrepresented classes like Hybrid and Wagon. 

Despite applying SMOTE, the model’s performance for minority classes remained suboptimal, highlighting the challenges associated with highly 

imbalanced datasets. The study contributes to the field of vehicle classification by demonstrating the use of Random Forest for such tasks and 

providing insights into the challenges posed by imbalanced class distributions. The findings underscore the importance of feature selection, 

especially regarding numerical attributes such as horsepower and engine size, in improving classification accuracy. However, the study also 

identified limitations, including potential biases in the dataset and the difficulty in improving performance for minority vehicle classes. Future 

research should explore alternative algorithms like XGBoost or deep learning models, and consider expanding the dataset to include more diverse 

vehicle types. The practical implications of this work are significant for vehicle market segmentation, offering valuable insights for manufacturers, 

dealerships, and analysts seeking to optimize vehicle classification and improve market targeting strategies. 
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1. Introduction  

The classification of vehicles based on technical specifications is increasingly critical in a variety of fields, including 

transportation management, infrastructure planning, and safety enforcement. Vehicle classification methods enable the 

efficient collection and processing of traffic data, which can subsequently enhance roadway design and management. 

As urban areas grow and vehicle traffic intensifies, the demand for effective vehicle classification systems that utilize 

advanced technologies has surged. Traditional methods of vehicle classification, which primarily depended on human 

observation and basic sensory input, have now evolved into complex systems combining machine learning, computer 

vision, and multi-sensor integration, thereby enhancing accuracy and efficiency in understanding traffic dynamics and 

behaviors. In recent years, the integration of smart technologies has revolutionized vehicle classification, allowing for 

the categorization of vehicles based on a multitude of features, including size, weight, and shape [1]. For instance, 

Velisavljević et al. [1] demonstrated a wireless magnetic sensor network capable of achieving an 88.37% accuracy rate 

in classifying five vehicle classes from extensive experimental data, indicating the effectiveness of modern 

methodologies over traditional approaches. The study highlights that the enhanced cost-effectiveness and energy 

efficiency of these systems make them viable for widespread deployment in vehicle classification tasks. Similarly, 

Atouf et al. [2] developed a real-time vehicle detection system that incorporates shadow removal and classifies vehicles 

based on their distinctive dimensions and features utilizing specified machine learning techniques. This dual approach 
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not only improves classification outcomes but also provides a scalable solution that can adapt to different urban 

environments. 

Intelligent Transportation Systems (ITS) further exemplify the significance of vehicle classification technologies as 

they aggregate multiple data sources ranging from video footage captured by visible light and thermal cameras to 

acoustic sensors to improve traffic management and surveillance capabilities [3]. These systems are essential for 

categorizing vehicles during traffic accidents, facilitating timely responses and enhancing public safety. Moreover, 

Rajab et al. [4] emphasized the importance of accurately classifying vehicle types, including motorcycles, which 

present unique challenges for classification systems today [5]. Such granularity in classification is crucial for 

developing safety measures and optimizing roadway designs. The flow of traffic management is also contingent upon 

the capabilities of vehicle classification systems to accommodate the complexities of modern urban transport networks. 

Wei et al. [6] noted that the increasing volume of vehicles on the road necessitates sophisticated vehicle type 

classification not only for traffic management but also for electronic toll collections and autonomous driving scenarios. 

In this context, identifying emergency vehicles such as ambulances and fire engines can significantly enhance 

emergency response times and efficient traffic flow. 

Accurate classification of vehicles remains a pressing challenge in the rapidly evolving landscape of ITS and urban 

traffic management. Various approaches exist to tackle this issue, each leveraging different sources of data and machine 

learning techniques to enhance classification accuracy amidst the complex dynamics of vehicular movement. The 

significance of classifying vehicles correctly cannot be overstated, as it influences traffic flow regulation, enhances 

safety measures, informs infrastructure planning, and optimizes urban mobility systems. Traditional image 

classification methods often face limitations due to environmental factors and variability in vehicle appearances. Noh 

and Jeon present an innovative solution by introducing Local Size-Specific Classifiers (LSCs), which dynamically 

adjust to normalized sizes according to contextual scene information [7]. This approach contrasts with conventional 

methods that rely on preset dimensions and offers enhanced reliability and interpretability in diverse traffic scenes. By 

incorporating both appearance cues and spatial location data for vehicle detection, LSCs effectively address several 

challenges associated with vehicle classification under varied environmental conditions. 

Moreover, the advent of low-cost mm-Wave radar technology enables sophisticated monitoring capabilities. Abedi et 

al. [8] demonstrate the ability of radar systems to capture vital spatial information regarding vehicle occupancy, thereby 

augmenting traditional classification techniques with new dimensions of data. By utilizing reflectance signals 

processed through machine learning classifiers like Support Vector Machines (SVM), the accuracies achieved in 

classification tasks can significantly improve, addressing issues previously associated with reliance solely on optical 

systems. A more comprehensive approach to vehicle classification involves integrating multi-sensor data fusion 

strategies. Li et al. [9] illustrate the effectiveness of deep learning architectures in conjunction with multiple sensory 

inputs such as LiDAR and optical imagery [10]. This method not only enhances robustness against variable 

environmental conditions but also contributes to the overall accuracy of vehicle categorization, crucial for automated 

toll collection systems and traffic management applications. Through the deployment of Convolutional Neural 

Networks (CNNs), the authors provide evidence supporting the potential for increased classification efficacy, 

particularly as it pertains to the challenges presented by simple optical recognition in diverse conditions. 

The goal of utilizing Random Forest and the Synthetic Minority Over-sampling Technique (SMOTE) for classifying 

vehicle categories is rooted in addressing the common challenges posed by class imbalance and improving the accuracy 

of predictive models in the realm of vehicular classification. As the demand for precise traffic monitoring and control 

escalates with the growth of smart city initiatives and automated systems, ensuring high classification performance 

becomes indispensable for various applications, including traffic safety, urban planning, and autonomous driving 

systems. Random Forest is a highly favored machine learning algorithm, particularly in classification tasks due to its 

robustness, capability to handle large datasets, and inherent feature selection mechanisms [11]. Its ensemble nature 

offers enhanced accuracy by combining the predictions of multiple decision trees, thus mitigating the likelihood of 

overfitting and improving generalization on unseen data. According to Kaya et al. [11], the performance of the Random 

Forest algorithm is significantly beneficial when leveraging diverse feature sets, enabling effective discrimination 

among different vehicle categories based on various attributes such as size, type, and operational status. In scenarios 

where training datasets are imbalanced where certain vehicle types are underrepresented compared to others the 
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effectiveness of classification algorithms, including Random Forest, may be compromised. This challenge leads to a 

propensity for classification bias, where predictions are skewed towards the majority class. To counter this limitation, 

the application of SMOTE emerges as a strategic intervention. SMOTE works by synthetically generating additional 

instances of the minority class, thereby balancing the dataset and facilitating a more equitable learning process for 

classifiers. By augmenting the dataset with synthesized examples that maintain the characteristics of underrepresented 

classes, SMOTE enhances the model's ability to recognize and accurately classify minority vehicle categories [11]. 

This study is highly relevant to the vehicle market analysis and classification, as it provides a novel approach to 

accurately categorizing vehicles based on their technical specifications, such as engine size, horsepower, and drivetrain 

type. By utilizing machine learning techniques like Random Forest and applying SMOTE for data augmentation, the 

research enhances classification accuracy, particularly in handling imbalanced datasets. The findings can help industry 

stakeholders, such as car manufacturers, dealerships, and market analysts, better understand vehicle segmentation, 

improve inventory management, and make informed decisions based on vehicle attributes, thereby offering valuable 

insights for strategic planning and marketing within the automotive sector. 

2. Literature Review  

2.1. Vehicle Classification Studies 

The utilization of machine learning in vehicle classification has proliferated in recent years, resulting in a diverse array 

of methodologies, algorithms, and technologies across various studies. This literature review presents significant works 

that explore these developments, particularly emphasizing the implementation of different machine learning techniques 

and their effectiveness in addressing the challenges of vehicle classification. Zhou et al. [12] discuss the incorporation 

of machine learning in automotive intelligence, including intelligent vehicle classification systems applied to 

autonomous vehicles. Their research highlights the significance of artificial intelligence in enhancing operational 

efficiency and real-time monitoring of vehicle states, thereby showcasing the growing intersection between IoT 

technology and vehicular systems [12], [13]. This synergy underscores the trend toward creating increasingly 

automated and intelligent transportation networks. 

Abedi et al. [8] emphasize the use of low-cost mm-Wave radar technology in vehicle monitoring systems. Their study 

evaluates how features derived from radar signals specifically, spatial information related to occupancy within vehicles 

can be effectively harnessed through machine learning classifications including Random Forests, K-Nearest Neighbors 

(KNN), and SVM. The application of these algorithms demonstrates the adaptive capabilities of machine learning in 

dynamic environments, thus contributing meaningful insights into the development of in-vehicle automated systems 

[8]. Ahmad et al. [14] offer a distinct perspective by applying seismic fingerprinting as a means of vehicle auto-

classification. The study highlights how modern vehicle detection systems leverage machine learning techniques 

alongside up-to-date sensing technologies. The findings suggest that the effectiveness of classification heavily relies 

not only on the algorithms employed but also on the specificity of the sensor technologies and the contextual parameters 

of the operational environment. Their work articulates the importance of sensor diversity as a proxy for operational 

efficiency and classification accuracy [14]. 

Ramasamy et al. [15] introduce a hybrid Deep Boltzmann Functional Link Network aimed at enhancing classification 

performance. By comparing their method against traditional algorithms like SVMs and neural networks, they provide 

empirical evidence supporting the superiority of their approach across several classification problems, including 

vehicle classification. Such investigations into hybrid models emphasize an ongoing quest to optimize algorithm 

performance beyond conventional techniquesc [15]. In a complementary study, Kleyko et al. [16] focus on a feature-

free data approach for vehicle classification using roadside sensors. Their methodology eschews traditional feature 

extraction, employing a data mining technique known as "data smashing." This novel approach leverages raw signals, 

purportedly streamlining the classification process and reducing the need for extensive preprocessing a significant 

departure from conventional methodologies and indicative of evolving perspectives on sensor data and machine 

learning integration [16]. 
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2.2. SMOTE in Classification 

The SMOTE has emerged as a pivotal approach for addressing the challenges associated with class imbalance in 

various classification tasks across multiple domains. Class imbalance often leads to degradation in the performance of 

machine learning models, particularly in situations where minority classes are of critical importance but are 

underrepresented. SMOTE, by synthesizing new minority class samples, has proven to be instrumental in rectifying 

such imbalances, thus enhancing classifier performance and reliability [17]. SMOTE operates by generating synthetic 

instances of the minority class rather than merely duplicating existing instances. It does this by selecting feature space 

points between existing minority samples and carefully creating new samples that have similar characteristics [18]. 

This process enriches the dataset and aids classifiers in learning from a more balanced dataset, ultimately leading to 

better generalization and predictive accuracy. The effectiveness of SMOTE has been demonstrated across various 

studies, revealing improvements in performance metrics such as F-score and G-mean, even when overall accuracy 

remains unchanged [17]. 

One significant advancement in the application of SMOTE is detailed by Hussein et al in their proposal for A-SMOTE, 

an enhanced preprocessing approach designed specifically for highly imbalanced datasets. By refining the traditional 

SMOTE method, A-SMOTE aims to further optimize the synthetization process, thus improving accuracy and fostering 

better predictive outcomes [18]. This variant showcases the versatility of SMOTE principles while introducing new 

methodologies to tackle specific shortcomings in existing implementations. In the realm of medical applications, the 

integration of SMOTE has been especially prominent. For instance, Sohn et al employed Multi-Label SMOTE to 

address class imbalance in a study related to glioblastoma and astrocytomas, highlighting its utility not just in binary 

classification but also in complex multi-label contexts. This adaptability emphasizes the significance of SMOTE in 

critical decision-making scenarios where minority class recognition is essential [19], [20]. 

2.3. Random Forest in Classification 

The Random Forest algorithm has gained significant traction in various domains for its robustness and versatility in 

classification tasks. This ensemble learning method, which constructs multiple decision trees and combines their 

results, offers a series of advantages that make it particularly effective for dealing with complex datasets across diverse 

fields. Below is a synthesis of research that highlights the application of Random Forest for classification in various 

domains. Wang and Wu discuss the application of Random Forest in high-speed network environments, specifically 

for packet classification at 100 Gbps line rates. Their study illustrates the feasibility of implementing Random Forest 

as part of a hardware switch pipeline. However, they note that while the potential is promising, the accuracy of packet 

classification still requires enhancements to meet the critical standards of correctness required in network operations 

[21], [22]. This reflects Random Forest's adaptability in high-throughput contexts, emphasizing ongoing improvements 

to bolster its effectiveness. 

The work of Schönlau and Zou [23] further elaborates on the robustness of Random Forest in statistical learning 

applications. They highlight that the improvements in classification performance when using Random Forest over 

traditional algorithms like logistic regression within social science metrics are often minor [23], [24]. This study 

underscores the method's stability across diverse applications, reinforcing its utility not just in technical settings but 

also in social science research. In the field of health and medical research, Muhammad et al. [25] explored the efficacy 

of Random Forest in predictive models for diabetes mellitus. They utilized the bootstrap aggregation technique inherent 

to Random Forest to construct multiple decision trees, demonstrating its effectiveness in classification tasks related to 

health predictions [25]. The integration of such advanced algorithms in healthcare underscores the crucial role of 

Random Forest in handling complex datasets that influence timely medical decision-making. 

In traffic management, Ramdani et al. [26] analyzed vehicular flow classification using Random Forest models. They 

noted that this supervised learning method is widely adopted due to its efficacy in training data samples and aggregating 

outputs from multiple trees for enhanced prediction accuracy [26]. This work exemplifies the ongoing reliance on 

Random Forest in dynamic environments, such as urban traffic systems, where accurate classifications are crucial for 

traffic management and safety protocols. The educational sector also benefits from the Random Forest algorithm, as 

highlighted by Pujianto et al. [27]. In this study, Random Forest was deployed to predict the acceptance rates of high 
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school science students based on performance metrics [27]. This innovative application underscores the versatility of 

Random Forest across various fields, including education. 

3. Methodology  

3.1. Dataset Overview 

The first step in the methodology involves loading and describing the dataset. The Large Cars Dataset is read into a 

DataFrame using pandas, and basic information about the dataset, such as its shape and data types, is displayed using 

df.info(). A statistical summary of the numerical features is provided through df.describe(), which gives insight into 

key characteristics like the mean, standard deviation, and range of each numerical feature. To ensure consistency, the 

column names are cleaned by removing special characters and spaces using df.columns.str.replace(). This is an 

important step to avoid issues when working with column names later in the process. The initial rows of the dataset are 

also printed to give a snapshot of the data, which helps verify that the data has been loaded correctly and is ready for 

further analysis. This step serves to familiarize the researcher with the dataset and its structure, providing foundational 

information for the subsequent steps. It also ensures that the dataset is in a clean and usable state before applying any 

analysis or machine learning techniques. The goal here is to quickly identify the dataset's features and understand the 

overall structure, including the numerical and categorical data types, which will inform the preprocessing and modeling 

steps that follow. By exploring this foundational information, the modeler can make informed decisions about how to 

approach the rest of the pipeline, especially with regard to handling any missing values or outliers in the dataset. 

3.2. Exploratory Data Analysis (EDA) 

The second phase focuses on EDA, which provides insights into the data and helps identify potential issues such as 

imbalanced classes. The target variable for this research, VehicleClass, is visualized using a count plot to display its 

distribution across different classes. This plot helps to identify any imbalances in the target variable, which could affect 

the performance of the classification model. By visualizing the count of each vehicle class, the researcher can spot if 

certain classes are underrepresented, which may necessitate the application of techniques like SMOTE later in the 

pipeline. Additionally, the distribution of the target variable is assessed to ensure that the class labels are appropriately 

distributed for the task. In addition to visualizing the target variable, a correlation matrix of the numerical features is 

generated and visualized using a heatmap. This helps uncover any strong relationships between numerical variables, 

such as engine size and horsepower, which may be predictive of the vehicle class. Understanding these relationships 

aids in selecting features that are most relevant for classification. The correlation analysis helps identify 

multicollinearity between variables, allowing for the removal or combination of highly correlated features. If there are 

insufficient numerical features for correlation analysis, a warning is issued to indicate that this phase may need to be 

revisited. Overall, EDA is a critical step for gaining initial insights into the data and guiding the preprocessing process. 

3.3. Data Preprocessing 

Data preprocessing involves preparing the dataset for machine learning by cleaning, transforming, and scaling the 

features. First, the dataset is divided into features (X) and the target variable (y), where y represents the vehicle class. 

To enable machine learning algorithms to work with the target variable, LabelEncoder is used to convert the categorical 

VehicleClass column into numerical labels. This transformation is essential for classification tasks since most machine 

learning algorithms require numerical input. After encoding the target variable, the categorical features in X are one-

hot encoded using pandas.get_dummies(). One-hot encoding transforms categorical variables into binary columns, 

allowing them to be used in the model. In addition to encoding categorical variables, numerical features are scaled 

using StandardScaler to standardize their range. Scaling ensures that all features contribute equally to the model, 

preventing certain features from dominating due to their scale. The dataset is then split into training and testing sets, 

with an 80/20 split using train_test_split. The stratified splitting ensures that the distribution of the target variable 

remains consistent in both the training and testing sets. This step is crucial to prevent the model from overfitting to a 

particular class in the data. Data preprocessing ensures that the dataset is in a format suitable for machine learning, 

helping improve the performance and accuracy of the model. 
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3.4. SMOTE Application 

SMOTE is applied to the training data to handle class imbalance. Imbalanced class distributions can lead to poor model 

performance, as the algorithm may become biased toward the majority class. SMOTE generates synthetic samples for 

the minority classes by creating new, plausible data points based on the existing ones. The number of neighbors used 

in SMOTE (k_neighbors) is dynamically adjusted based on the size of the smallest class in the training set to ensure 

that the resampling process is appropriate. If the smallest class has fewer samples than the default k_neighbors, the 

number is adjusted to prevent over-sampling. After applying SMOTE, the new distribution of classes is visualized to 

ensure that the class imbalance has been addressed. The sns.countplot() function is used to display the class distribution 

in the resampled training set. This visualization helps confirm that SMOTE has created a more balanced training set, 

giving the model a better opportunity to learn from minority classes. By using SMOTE, the training set becomes more 

representative of all classes, improving the overall classification performance. However, the test set remains untouched 

by SMOTE to ensure that the evaluation is done on real-world, imbalanced data, providing a realistic measure of model 

performance. 

3.5. Model Selection & Training (Random Forest) 

Random Forest is chosen as the model for classification due to its robustness, interpretability, and ability to handle 

both numerical and categorical features. It is an ensemble method that constructs multiple decision trees and averages 

their predictions to improve accuracy and reduce overfitting. The model is initialized with 100 estimators, and the 

training process begins using the resampled data from the SMOTE step. The model is trained on the features and their 

corresponding encoded target variable, y_train_resampled, using the fit() method. Random Forest is particularly 

effective for tabular data with a mixture of feature types and is relatively fast compared to more complex models like 

neural networks. The Random Forest model is trained efficiently by utilizing multiple cores on the machine through 

the n_jobs=-1 parameter, which speeds up the training process. During training, the model learns to classify vehicles 

based on the features such as engine size, horsepower, and weight. One of the advantages of Random Forest is that it 

provides feature importances, which helps in understanding which features contribute most to the classification 

decision. Once training is complete, the model is ready to be evaluated on the test set. The trained model is capable of 

making predictions on unseen data, and its performance is assessed through various metrics, including accuracy and 

F1-score. 

3.6. Model Evaluation 

After training the model, its performance is evaluated on the test set, which consists of data that was not used during 

the training process. The accuracy of the model is calculated using the accuracy_score() function, providing a measure 

of how well the model predicts the correct vehicle class. A classification report is generated using 

classification_report(), which includes additional metrics such as precision, recall, and F1-score for each class. These 

metrics provide a more detailed assessment of the model’s ability to distinguish between vehicle classes. The 

classification report is essential for understanding the model’s strengths and weaknesses, particularly in terms of how 

it handles each class. A confusion matrix is also generated using confusion_matrix() to visualize the performance of 

the classifier across all classes. This matrix helps identify specific misclassifications, showing how the model's 

predictions align with the actual vehicle classes. The confusion matrix is visualized using a heatmap to provide a clearer 

interpretation of the results. By evaluating the model using these metrics, the researcher can identify areas for 

improvement, such as class-specific misclassifications or low recall for certain classes. Model evaluation is critical for 

understanding the practical performance of the classifier and for making informed decisions about potential 

improvements. 

3.7. Model Checkpointing 

Once the model has been trained and evaluated, it is saved for future use through model checkpointing. This involves 

saving the trained Random Forest model, the scaler used for feature scaling, the label encoder, and the processed 

column order to disk using joblib.dump(). The checkpoint is stored at a predefined path (SAVED_MODEL_PATH) 

and contains all necessary components to make future predictions or retrain the model without starting from scratch. 

This approach ensures that the model can be easily reloaded and used for inference on new data without needing to 
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repeat the training and preprocessing steps. Model checkpointing is crucial for deploying the model in production 

environments or for future experimentation. Saving the model and its components also helps ensure consistency in 

predictions when the model is used in different environments. The checkpoint file includes the model’s parameters, 

scaling procedure, and encoding information, allowing for seamless integration with new datasets that follow the same 

preprocessing steps. This step concludes the pipeline, ensuring that the trained model can be reused efficiently and 

effectively for vehicle classification tasks in the future. 

4. Results and Discussion 

4.1. Result  

4.1.1. Exploratory Data Analysis (EDA) 

The dataset consists of 428 entries, with 15 columns representing various features of vehicles. These columns include 

both numerical and categorical data, such as EngineSize, HorsePower, Weight, and VehicleClass. The statistical 

summary of numerical features shows that the dataset contains vehicles with engine sizes ranging from 1.3 to 8.3 liters, 

and horsepower ranging from 73 to 500. The average weight of vehicles is approximately 3,578 lbs, with the lightest 

vehicle weighing 1,850 lbs and the heaviest 7,190 lbs. The VehicleClass column contains six unique classes: Hybrid, 

SUV, Sedan, Sports, Truck, and Wagon, with no missing values. The dataset was carefully cleaned, and all columns 

were prepared for further analysis. The first five rows of the dataset reveal details about various vehicle models and 

their features, including MSRP, DealerCost, and technical specifications such as EngineSize and HorsePower. The 

dataset is diverse in terms of vehicle types and includes a range of car classes and regions of origin. This initial 

exploration sets the foundation for further analysis, enabling the identification of patterns and relationships that will 

inform the classification model. Understanding the dataset's structure and summary statistics is critical for ensuring 

that appropriate preprocessing steps are applied and the data is ready for modeling. 

EDA helped uncover important insights into the dataset, particularly the distribution of the target variable, 

VehicleClass. Figure 1 visualize the distribution of vehicle classes before applying any balancing techniques. This plot 

highlighted imbalances in the dataset, with some classes like SUV and Sedan being overrepresented, while classes like 

Hybrid and Wagon were underrepresented. These imbalances suggested that class imbalance might affect model 

performance, motivating the application of SMOTE to address this issue. 

 

Figure 1. Distribution of Vehicle Classes (Before SMOTE) 

Additionally, Figure 2 visualize the relationships between numerical features. The analysis showed strong correlations 

between EngineSize, HorsePower, and Weight, which suggests that these features are highly influential in classifying 

vehicle types. Understanding these relationships is key to selecting important features for the model. By conducting 

EDA, we gained a deeper understanding of the dataset's structure and identified areas that required further attention, 

such as handling imbalanced data through SMOTE. 
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Figure 2. Correlation Matrix of Numerical Features 

4.1.2. Results of Data Preprocessing and SMOTE 

Data preprocessing involved several steps to prepare the dataset for machine learning. The target variable, 

VehicleClass, was encoded into numerical labels using LabelEncoder, transforming the class names into integers for 

classification purposes. The dataset was then split into numerical and categorical features. Categorical features like 

Brand, Model, and Region were one-hot encoded to create binary columns for each unique category. This 

transformation allowed the model to work with categorical data effectively. After encoding, the dataset was split into 

training and testing sets, with 342 samples in the training set and 86 samples in the testing set. The features were scaled 

using StandardScaler, which normalized the numerical features to have zero mean and unit variance, ensuring that no 

feature dominated the model due to scale differences. The preprocessing steps were completed successfully, and the 

resulting dataset was ready for the application of machine learning algorithms. The preprocessed dataset contained 

1,306 features after encoding and scaling, making it suitable for training a classification model. 

SMOTE was applied to balance the training data by generating synthetic samples for the minority classes. Based on 

the smallest class size, k_neighbors was set to 2, ensuring that synthetic samples were created by considering the nearest 

two neighbors. This adjustment helped prevent over-sampling of larger classes, maintaining a more balanced dataset. 

After applying SMOTE, the training set was expanded from 342 to 1,254 samples, with the class distribution becoming 

more balanced. The effect of SMOTE was visualized by plotting the class distribution in the resampled training set 

(Figure 3). The plot showed a more even distribution of classes, which is crucial for training a model that can generalize 

well across all vehicle types. The use of SMOTE ensured that the model would be exposed to a more representative 

sample of each class, improving its ability to classify vehicles from underrepresented categories. The successful 

application of SMOTE helped mitigate the risk of class imbalance affecting the model's performance. 
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Figure 3. Distribution of Vehicle Classes in Training Data (After SMOTE) 

4.1.3. Results of Model Training and Evaluation 

The Random Forest classifier was chosen for this classification task due to its robustness and ability to handle both 

numerical and categorical data. The model was trained using the resampled training set, which consisted of 1,254 

samples. The Random Forest model was initialized with 100 trees (n_estimators=100) and trained using multiple cores 

(n_jobs=-1) to speed up the process. The model was successfully trained on the resampled data, and the training process 

was completed without any issues. Random Forest's ability to handle high-dimensional data made it an ideal choice for 

this task, as the dataset contained a large number of features after one-hot encoding. The model's performance was 

expected to improve with the diverse set of decision trees, each trained on different subsets of the data. After training, 

the model was ready for evaluation, and its performance was assessed using the testing set to ensure that it could 

generalize well to unseen data. 

The model was evaluated on the test set, achieving an accuracy of 77.91%. The classification report provided detailed 

metrics, including precision, recall, and F1-score for each vehicle class. Notably, the model performed well in 

classifying Sedan vehicles, achieving a recall of 1.00 and an F1-score of 0.88. However, the model struggled with the 

Hybrid and Wagon classes, where it achieved precision and recall of 0.00, indicating that these classes were poorly 

predicted. The confusion matrix further highlighted these issues, showing that certain classes were frequently 

misclassified. Despite the model's strong performance with some vehicle classes, the overall results were mixed, with 

a macro average recall of 0.42, suggesting that the model could be improved, particularly for underrepresented classes. 

The confusion matrix, which was visualized using a heatmap (Figure 4), provided further insight into the 

misclassifications and helped pinpoint areas where the model's performance could be enhanced. The evaluation metrics 

suggest that while the Random Forest model performed reasonably well overall, there is room for improvement, 

especially for certain vehicle types. 

 

Figure 4. Confusion Matrix 
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After successfully training and evaluating the model, the final Random Forest model, along with the label encoder, 

scaler, and feature list, was saved to a checkpoint file using joblib. This saved model, stored at the path 

'random_forest_vehicle_classifier.joblib', allows for future use in vehicle classification tasks without the need to retrain 

the model. The checkpoint includes all the necessary components to preprocess new data, make predictions, and ensure 

consistency across different environments. Saving the trained model and preprocessing components ensures that the 

model can be easily deployed or used for further experimentation. The model checkpoint allows for efficient reuse in 

real-world applications, such as vehicle classification in online platforms or automotive industry analysis. This final 

step concludes the research pipeline, providing a robust and reusable model for classifying vehicles based on their 

technical specifications. 

4.2. Discussion 

The results of the classification model reveal several important insights into the dataset and the vehicle classification 

task. One of the most striking observations is the strong performance of the Random Forest model in classifying Sedan 

vehicles, with perfect recall (1.00) and a high F1-score (0.88). This suggests that the features, such as engine size, 

horsepower, and weight, are highly indicative of the Sedan class, making it easier for the model to correctly identify 

this vehicle type. However, this success is not consistent across all vehicle classes, with other categories such as Hybrid 

and Wagon showing poor performance, as evidenced by a precision and recall of 0.00 for these classes. These 

discrepancies highlight the challenges of dealing with class imbalances, even after applying SMOTE, and suggest that 

more sophisticated resampling or feature engineering techniques may be needed to improve performance for minority 

classes. 

The class imbalance in the original dataset was a significant challenge, and while SMOTE helped balance the training 

data, the model still struggled with underrepresented classes. For example, the Hybrid and Wagon classes had very few 

instances in the training set, which led to poor model performance despite the resampling technique. The confusion 

matrix further emphasized this issue, showing that the model frequently misclassified these minority classes as other 

vehicle types. This suggests that although SMOTE improves balance, it may not always be sufficient in cases where 

the class distribution is extremely skewed. Future work may explore alternative strategies such as class-weight 

adjustments, more aggressive data augmentation, or the use of more complex algorithms that are better suited to handle 

imbalanced datasets. 

In terms of feature importance, the model likely relied heavily on attributes like HorsePower, EngineSize, and Weight, 

which showed strong correlations in the EDA phase. These features are intuitively relevant to vehicle classification, 

especially for distinguishing between larger, more powerful vehicle types like SUVs and Trucks, and smaller, more 

fuel-efficient classes like Sedans and Hybrids. However, the relatively low performance for certain vehicle classes 

suggests that additional features, such as more granular information about the vehicle's design or performance 

characteristics, could improve the model's ability to distinguish between difficult-to-classify vehicles. This highlights 

the need for more comprehensive data and potentially feature engineering to better capture the nuances of different 

vehicle types and improve the overall classification accuracy. 

5. Conclusion 

In this study, the Random Forest classifier was used to classify vehicles based on their technical specifications. The 

key findings reveal that the model performed well in identifying `Sedan` vehicles, achieving a perfect recall and high 

F1-score. However, the model struggled with underrepresented classes such as `Hybrid` and `Wagon`, highlighting the 

challenge of class imbalance, even after applying SMOTE. This indicates that while SMOTE improved the balance of 

the training set, additional techniques may be required to further enhance the classification of minority classes. Overall, 

the study provided insights into how certain features, such as engine size and horsepower, are critical for vehicle 

classification, but also pointed to the limitations of relying on a single machine learning approach for a highly 

imbalanced dataset. This research contributes to vehicle classification research by demonstrating the application of 

Random Forest in a real-world scenario and evaluating its performance in a diverse dataset. It offers insights into the 

importance of feature selection and the challenges posed by class imbalances in predictive modeling. However, the 

approach has limitations, including potential biases in the dataset, such as unequal representation of vehicle types. For 
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future work, testing with other algorithms like XGBoost or deep learning methods, as well as incorporating larger, 

more diverse datasets, could improve model performance. The practical implications of this study are significant for 

vehicle market segmentation, enabling manufacturers and dealerships to better understand vehicle categories, optimize 

their inventory, and improve targeted marketing strategies based on accurate vehicle classification models. 
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